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The nature of the interfaces controls the properties of thin film oxide mulitlayers.  High resolution mapping
with 3D atom probe makes the direct correlation between structure, chemistry and properties possible.

Conclusions
The high resolution atom maps produced by the 

atom probe are powerful. They let us see where 
atoms reside inside materials. We demonstrate how 
these maps enable us on an atomic scale and in 3-
dimensions to directly visualize very thin layers, their 
chemistry, what the interfaces underneath the surface 
look like in thin film multilayers. This allows better 
understanding of film growth and the relationship 
between structure and properties.

Future Directions
• Other novel materials of commercial interest: ferroelectric capacitors and tunnel junctions

• Address how processing techniques used in companies might influence growth: to aid in the 
design of better films

• Generate realistic models on how our films behave based on the actual structure & chemistry

1. “Materials for Magnetic Data Storage” Materials Research Society Bulletin 31 (May 2006)
2. “Atom probe tomography” TF Kelly & MK Miller, Review of Scientific Instruments 78 (2007)
3. “In situ site-specific specimen preparation for atom probe tomography” K Thompson et al. 
Ultramicroscopy 107 (2007) pp. 131-139.
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• The multilayers are grown on Si substrates using 
high vacuum sputtering techniques (NIST)

• We use a focused ion beam to make fine needles 
from our samples (Electron Microscopy Center, 
Argonne)

Characterization Methods
• Chemistry & structure is studied with a new laser 
pulsing atom probe (Northwestern University Center 
for Atom Probe Tomography)

• Electron microscopy is used to image structure 
on a micron to nanometer scale (EMC, Argonne)

Sample Preparation Methods

Motivation

Abstract
Thin film multilayers are used in a number of 

household electronic devices:

mp3 players hard drives memory chips game consoles

They consist of a sequence of very thin layers, each 
of which can be 50,000 times thinner than the 
average human hair.

How well the device operates is linked to the:
• chemistry and structure of layer interfaces
• chemistry and structure within layers 
• layer thicknesses

Atom probe allows us to “see” atom by atom in  
3-dimensions both structure and chemistry at very 
high magnifications.
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Develop a method that describes how rough the 
interfaces are, so we can understand thin film growth

• Well defined grooves in the 
interface establish the location of grain 
boundaries

• Fine-scale roughness is measured

• Interfacial roughness differs 
between alternate interfaces in early 
growth

Model PtMn (10 nm) / CoFe (3 nm) repeated structure

Pt Mn Co Fe

34 n m

3-D view of the interface between 
two of the layers
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Multi-step process to make needle shaped specimens is 
challenging and continues to be developed   
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• Concentration of the top 
and bottom electrodes are 50 
% Co and 50 % Fe

• Interfaces between layers  
are chemically sharp

• Evidence for a Co-Fe oxide 
less than 1 nm in thickness 
above the bottom electrode. 
This will influence how 
current passes through the 
layers.
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Multi-step process to make needle shaped specimens is 
challenging and continues to be developed   


